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Abstract. Ambiguities in the Lax pairs for a one-dimensional small-polaron model and 
the one-dimensional Hubbard model are discussed. 

1. Introduction 

The one-dimensional (1 D) small-polaron model describing the motion of an additional 
electron in a polaronic crystal is given by the Hamiltonian 

N N N 

X =  w C n j - J  C ( u ~ u ~ - ~ + u , L ~ u ~ ) +  v njn,-I. 
j = 1  j = 1  j = l  

Here a,’ and U, are, respectively, creation and annihilation operators at lattice site j in 
a one-dimensional chain of N sites, and satisfy the usual anticommutation relations 

{ U l ,  a]}  = {a : ,  a;}= 0 ( 2 )  

nl = a, al (3) 

{UI,  a,’} = 6, 

and n, is the density operator 

while the concrete expressions for W, J and V can be found in the paper of Fedyanin 
and Yushankay [l]. This model was first studied by Pu and Zhao [ 2 ]  and then by 
Zhou er a1 [3] in the framework of the quantum inverse scattering method (QISM) [4-61. 

Another interesting completely integrable system in condensed matter theory is the 
well known I D  Hubbard model 

%=-E( + t 
a ] S a J - ~ S + a J - , Y a J S ) S  v E ( n ] , - t ) ( n J l - f ) + ~ C ( n J S - f ) .  (4) 

J I ~  I J .s  

Here U is the coupling constant describing the Coulomb interaction and p is the 
chemical potential. s represents the two components of the fermions (s = t or J.). As 
usual, a,, and a:s satisfy 

{a,,, U]*}  = {a:r ,  = 0 {a,,, .Is> = 6,]6,. ( 5 )  

5 Present address: Department of Mathematics, I’li Teacher’s College, I’ning, People’s Republic of China. 
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The model (4) has been shown [ 7 , 8 ]  to possess an infinite number of conservation 
laws by identifying a two-dimensional ( 2 ~ )  lattice statistical model for which a one- 
parameter family of transfer matrices commutes with the Hamiltonian. The Lax pair 
as well as the solution to the Yang-Baxter relations for the Hamiltonian (4) with the 
chemical potential term vanishing has also been obtained [9-111. 

In this paper we present two different forms of the Lax pairs for a I D  small-polaron 
model and the I D  Hubbard models. We find that not all forms of the Lax pairs are 
physically reasonable when we attempt to tackle the problems in the framework of QISM. 

2. I D  small-polaron model 

Applying the well known Jordan-Wigner transformation for a,, a: and n, 

1 + U;  
n, =- ( 6 )  2 

with U; = ;( u; f iui ) and U;, U ; ,  uf being Pauli spin operators at lattice site j ,  we have 

Here the periodic boundary condition is imposed. Thus, the problem reduces to the 
study of the Heisenberg X X Z  model in an external magnetic field parallel to the z 
direction. The equations of motion are 

e: = i[J(u;+, + u,?-l )u; - f vu;( u;+l + U J - ~ )  + ( w + v)v:] 
bJ- = -i[ J (  uJLl + u,--,)uf - 4 VuJ-( + + ( W + V)u[] (8) 

e; = 2 i J [ a ~ ( ~ ~ + ~ + u ~ ~ , ) - ( u ~ + , + u ~ ~ , ) u J ] .  

In QISM, instead of directly considering the equations of motion, it turns out to be 
more fruitful to study an operator version of auxiliary problem 

4J+1 = ‘J4J 4j = Mj@j* (9) 

The consistency condition yields the Lax equation 

L, = M,+, L, - LJMj. 

This implies that a transfer matrix 

T N  =tr(LNLN-I.. . L1) (11) 

does not depend on time under the periodic boundary condition. Thus, the correspond- 
ing system possesses an infinite number of conservation laws, which in turn are related 
to the integrability of the system. In our case, it is easy to check that the equations 
of motion (8) are equivalent to the Lax equation (10) with 
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and 

Here 
v cz d=i - -  

a b2 - c2 4 b 2 - c 2  
a - b  ( a  - b ) b +  c' 

g = iJ f = -iJ- 

and a, b, and c are given by the usual Baxter parametrisation [12] 

a : b :  c = sin(/\ + 7) :sin(/\ -?) :s in  277. (15)  

However, the transfer matrix thus constructed does not lead to the same energy 
eigenvalue as that obtained by using the coordinate Bethe ansatz method. This is why 
we want to search for another form of Lax pair for the model. We have recently shown 
that this deficiency can be removed by identifying a special 2~ statistical model for 
which a one-parameter family of transfer matrices also commutes with ( 7 )  [3]. 
Explicitly, L, is given by 

a++b+ I a+-b+ = 
2 (+/ 

\ CU,' 2 2 "'I 
L, = 

Accordingly, (10) may be viewed as a matrix difference equation for the unknown 
matrices MI f o r j  = 1 ,2 ,  . . . , N if the time derivatives of the spin operators are replaced 
by the equations of motion (8). 

After a tedious but straightforward calculation, we obtain explicitly the form of 
MI as follows: 

MJ = ru ;u ; - ,  + g-a;a:-, - dU::af-, + d (a: + a:-,) + do 
-p+a;a:-, +p-u;a:-, + q+aT+ q-a;-, 

p-a/-a;-, -p+a;a/--, + q-a; + q+al--, 
g+u: U/-- I +f-a1-U;- I - da:af- 1 - d ( + U:- 1 )  - do 

The constants appearing in (17) are given by 

a, - b, ft = -iJ- (a ,  - b,)b, + c2 
g, = iJ 

a* b+b--c2 
w + v  

2 
d --i- v c2 

4 b+b--c2 0 -  
d = i -  

. J ( a + a - + b + b - - c  2 ) c  - - -1 - . V b,c p*=1-  
2 b,  b- - c2 2 a,( b+b- - c') 

J (a+a- - b+b-+ c2)c 
2 a,(b+b--c*) ' 

qt = -i - 
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From (18) we have 

and 

V U+U-  + b+b- - c2 --= 
25 a+b++a-b-  

Now note that the coupling constants J and V are independent of the spectral parameter 
A. Thus, we have rederived the results presented in our previous work [3]. A natural 
parametrisation for (20) and (21) is 

a + : b + : a - :  b_:c=5sin(A+77):5- 'sin(A - 7 ) : t - I  sin(A+T): ts in(A - ~ ) : s i n 2 7 7  
(21) 

with 

6 = sec a cos(A - 7 + a) sec(A - 77). (22) 

By this parametrisation, J, V and W are given by 

V 
2 

J : --: ( W + V) = 1 : cos 277 : 2 sin 2 7  tan a. 

Let us now transform back into the original fermion operators. For this purpose, 
we introduce a gauge transformation 

2, = VJ,,L,V,-' (24) 

with 

It is easy to see that the counterpart of the Lax pair, M,, transforms as 

AJ = VJMJVyl+ CVy' .  (26) 

Substituting (16) and (17) into (24) and (26), we immediately obtain 

and 

[if+ + (i  - 1 )  J ]a~u, - ,  + [ -ig- + ( i  + 1) JIaJ-, U, - 4dnJn,- I + 4d ( n, + n,- 1)  - 3d + do 

2p-n,-,aJ -2ip+n,aJ-, + (4-  -p - )a ,  +i(q++p+)aJ-l  
[ -ig+ + ( i + 1 )  J]aja,-, + [if- + (i - 1 )  J]a,'-, a, - 4dn,n,- + d - do 

Correspondingly, we can also construct another form of the Lax pair in fermions 

t .  -2p+ .,' 'J-1 - 2ip- 'I- 1 "1 + (q+ +P+laJ - l (  4- - p - )  1 
4=( 

) .  (28) 

from (12) and ( 1 3 )  

-icaJ a - ( a + i b ) n J  
b - ( b  - ia)n, 

Y,=( t 
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and 

A,=( 
[if + (i  - l)J]a;a,-, + [-ig + ( i +  l)J]aj- ,a,  -4dn,n,-, +4d(  n, + nJ-l)  -3d + d o  

-2p ( a:.,- + ia;- I n, ) + ( q  + p )a; - i( q - p )  a;- 

[ -ig + (i + l)J]a:a,-, + [if + (i  - 1)JIaj-  I a, - 4dn,n,-, + d - do ) .  (30) 
2p( '1- I - - 1 ) + (9  - p )  + i( + p)'J- I 

Thus we have completed the representation of the Lax pairs for a I D  small-polaron 
model. 

3. I D  Hubbard model 

The Hamiltonian (4) can be brought into the form 

using the Jordan- Wigner transformation 

Here the sum over j  is from 1 to N, and the periodic boundary condition is imposed. 
From (31) we see that our problem reduces to that of a pair of X Y  models with the 
presence of magnetic fields coupled to each other. Then, the equations of motion are 
as follows: 

with similar equations for r spins. 

forms of the Lax pairs for this model. One is 
As in the case of a I D  small-polaron model, we can also construct two different 

r, = z ~ L ; ~ ) L ; ~ ) z ~  (34) 
C 

MJ = I~ ' (M~" '+M~' ' )Z0+2i -s inh  h[(u,+u, - u J u ~ ) T ; + u ; ( T : T ~ -  rJ-~of) ]  
a 

with 

h h 
sinh - 

2 2 
Io = cosh -+ 
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and 

2c2 
ab 

U = - sinh 2h. (37)  

Here, LjU', L;T', MjU' and M;" are defined by setting 

r )  = ~ / 4  J = l  v = o  W = p  (38)  

in (12) and (13). In (34), and in subsequent equations, we have used Pauli spin 
matrices U, and ro. 

The other form of the Lax pairs for the I D  Hubbard model can be constructed in 
the following way. Let us first consider the case U=O. Then, the corresponding 
equations of motion can be cast into the form 

Here, LjU), LjTi,  M:"' and MjT' are defined by setting (38) in (16) and ( 1 7 ) .  Using 
this result, we can combine the equations of motion (33) for the case U # 0 into 

d i .  - U -  
d t  4 

-1 - - MI+ L, - L,M, - i - [ L,, U: rf ] 

The remaining question is how to put (41) into the form of Lax equation (10). Guided 
by the known results previously found in [8], we choose 

L~ = I~~] I , , .  (44) 

L, = z ~ ~ ~ ~ + ~ I ~ ~ L ,  - ~ ~ ~ i ~ f i , ~ ~  - i (  U/~)[L] ,  a:r;]. 

Thus, (41) can be rewritten as 

(45) 

zofi l~; l  = Q, + Q;-~ (46) 

Now note that 

with 

Then, (45) becomes 

& = (Ii'fi~+ I I o +  QJ+ 1 LJ - LJ ( I i l @ z o +  QJ -I- Q:LJ LJQJ - i( u/4)[L~ 9 (48) 
A lengthy but simple algebraic calculation shows that (48) may be expressed in the 
Lax form (10) with 

for a proper choice of the coupling parameters, i.e. 
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2c2  2c' 
a+b+ a-b- 

U = -  sinh 2 h  = - sinh 2h. 

This is consistent with the result of Zhou and Tang [8]. 

results on the Lax pairs for the I D  Hubbard model (4). Explicitly, one is 
Transforming back to the original fermion operators, we immediately obtain explicit 

with 
k,, = b - ( b  - ia)nj, 4, = a - ( a + i b ) nfs (52) 

and 

with 

h . - h  x j s ( h )  =-(e a,, - 1  e u ~ - ~ , ) .  a 

The other pair is 
-e-hk. k. -kj,ajl iajtkjL i ehajraj, 

-ikjTajl e-hk,tl,l e-hajTaIl ia,,l,, 
i=[ aJfkjl e-ha;Ta,l e-hl,tkjT l,,a,, 

-i eha? f T  at f i  alTbl iljtajl -ehljTljl 

with 

k,, = b+-(b+-ia+)n,, l,, = a - - ( a- + i b-) n,, 
and 

S - i p  + mj ixjl-(h) ,yjt-(h) 0 
ix;l+(-h) - S + m ,  o -Xj  1 - ( - h 1 
-xj,+(-h) 0 -S+ mi iXjL-(-h) 

0 xjT+(h) ixj,+(h) S + i p + m j  
with 

This completes our analysis for the I D  Hubbard model. 
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4. Conserved currents 

As is well known, a completely integrable model exhibits an infinite number of 
conserved currents commuting with each other. The generating functional for those 
conserved currents is the row-to-row transfer matrix [ 131. For later use, let us introduce 
an auxiliary space variable 0. Then, the transfer matrix may be written as 

~N(~)=~~,[LN,(A)LN-~~(A). . . Lio(A)I ( 5 9 )  

with the local monodromy matrix L,,(A) acting in the tensor product of the space V, 
and the auxiliary space V,, and the trace as well as the matrix products are carried 
out in the auxiliary space V,. 

A local monodromy matrix is called regular if it satisfies the condition 

L/,(77) = p , o  (60) 

where 7 is a constant, and P,, is the permutation operator. In this case, we can write 
out an expansion for & ( A )  

1 1 
2! 3! 

1 + Hj,(A - 17) +- Bj,( A - T ) ~  +- C,,(A - 7 7 ) 3  + . . . 
(61) 

Substituting this into (59),  we obtain the expansion of In rN ( A )  in powers of A - 7: 
1 1 
2 !  3! 

l n T N ( h ) = l n T , ( 7 7 ) + H ( A - ~ ) + - J ( A - 7 7 ) 2 + - K ( A - ~ ) 3 +  . . .  (62) 

with 

1 N W  
lnTN(A)=lnTN(77)-- 

J sin 277 

1 
2! J2 sin'277 

-- 

+- 3! 1 J3s in327 [ k - (2  J2 + $) ( H - y) 
+- w+ '( 2J2+ V2-( w +  v)2) f ""'1 ( A  - T ) ~ + .  . 2 2 j = l  8 
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with 

and 

Similar results can also be obtained for the coupled spin model (31): 

with 

and 

N 



222 Hum-Qiang Zhou, Lin-Jie Jiang and Jian-Gang Tung 

Transforming back to the original fermion operators, we obtain the first two 
conserved currents for a I D  small-polaron model 

( - i ) i  = -J 1 ( u , + ~ u , - ~  - aj-la,+l) N t  

J = 1  

N 

+ v 1 [n,+l(a:a,-l - u:- l  + a J - u;a,+l)n,-l+ ajq-1- aj-la/l 
] = I  

(72) 
N 

t A =  2~~ 1 (aj+la,-2+ a,-2a,+l) 
J = 1  
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5. Conclusion 

In this paper we have presented two different forms of the Lax pairs for both a I D  

small-polaron model and the I D  Hubbard model. Our results show that not all forms 
of the Lax pairs are physically reasonable when we attempt to tackle the problems in 
the framework of QISM. Here we wish to stress that we have not succeeded in finding 
the solution to the Yang-Baxter relations for a special 2~ statistical model generated 
by the local monodromy matrix (44) because of the enormity of the calculation. In 
our opinion, however, this monodromy matrix will yield a class of solutions to the 
Yang-Baxter relations provided 

a+b+ -- a+a- + b+b- - c2 = 0 - r. 
a-b -  

Here r is a constant independent of the spectral parameter A. We will return to this 
problem in a future publication, along with a comparison of our results with those of 
Shastry [14]. 

Also, we have derived an expansion of the transfer matrix T ( A )  through third order 
in A - 7. This makes it possible to explicitly construct the first two non-trivial conserved 
currents for both models. We think our results may provide a basis for finding the 
boost operator for the Hubbard model [ 15,161. As was noted by Itoyama and Thacker 
[17], the boost operator plays a central role in the construction of lattice Virasoro 
algebra in the Baxter eight-vertex model. 
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